Задача повышенной сложности, часть с

Подготовка к ЕГЭ по информатике

ЕГЭ по информатике состоит из двух частей. В первой части 23 задачи с кратким ответом, во второй — четыре задачи с развёрнутым ответом. В первой части экзамена 12 заданий базового уровня, 10 заданий повышенного уровня и одно задание высокого уровня. Во второй части — одно задание повышенного уровня и три высокого.

Решение задач из первой части позволяет набрать 23 первичных балла — по одному баллу за выполненное задание. Решение задач второй части добавляет 12 первичных баллов (3, 2, 3 и 4 балла за каждую задачу соответственно). Таким образом, максимум первичных баллов, которые можно получить за решение всех заданий, — 35.

Первичные баллы переводятся в тестовые, которые и являются результатом ЕГЭ.

Из них 90 минут отводится на решение задач из первой части. В среднем на каждую задачу из первой части уходит от 3 до 5 минут. На решение задачи №23 требуется 10 минут.

Остаётся 145 минут на решение заданий второй части экзамена, при этом для решения последней задачи №27 понадобится не менее 55 минут. Эти расчёты выполнены специалистами Федерального института педагогических измерений и основаны на результатах экзаменов прошлых лет, поэтому к ним следует отнестись серьёзно и использовать в качестве ориентира при подготовке к экзамену по информатике.

Тщательно изучите варианты ЕГЭ предыдущих лет. Экзамен по информатике — один из самых стабильных, для подготовки можно смело использовать варианты ЕГЭ за последние 3-4 года.

Геометрия в пространстве (стереометрия)

Главная диагональ куба:

Объем куба:

Объём прямоугольного параллелепипеда:

Главная диагональ прямоугольного параллелепипеда (эту формулу также можно назвать: «трёхмерная Теорема Пифагора»):

Объём призмы:

Площадь боковой поверхности прямой призмы (P – периметр основания, l – боковое ребро, в данном случае равное высоте h):

Объём кругового цилиндра:

Площадь боковой поверхности прямого кругового цилиндра:

Объём пирамиды:

Площадь боковой поверхности правильной пирамиды (P – периметр основания, l – апофема, т.е. высота боковой грани):

Объем кругового конуса:

Площадь боковой поверхности прямого кругового конуса:

Длина образующей прямого кругового конуса:

Объём шара:

Площадь поверхности шара (или, другими словами, площадь сферы):

Несовместные события

Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)

Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:

$Р(А+В)=Р(А)+Р(В)$

На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение:

Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:

$Р(А+В)=Р(А)+Р(В)$

$Р = 0,3+0,18=0,48$

Ответ: $0,48$

С чего начать

Репетиторы советуют не начинать с массового решения тренировочных тестов. К ним надо относиться, как к способу «измерить» свою готовность, не более. Прорешали один тест, получилась «двойка» — есть четкое понимание, что работать надо по каждой теме. Отработали с десяток тем — можно пробовать еще один тест. Получилось лучше? Значит, двигаетесь в правильном направлении.

Как грамотно распланировать время

В плане распределения времени многое зависит от фактической готовности ученика. Повторимся, нулевые знания к 11 классу — это невозможно. Что-то в голове из пройденного в классе точно осталось. Нужно понять, что, а потом двигаться от простых заданий к сложным задачам:

  • посвятите первую треть оставшегося времени повторению теории и изучению формул по кодификатору по математике профильного уровня;
  • еще треть времени — на решение задач, специалисты советуют быстро «проскочить» первую часть (повторяем уравнения, систему координат, производные, логарифмы, степени и 2 формулы теории вероятностей), а потом переходить ко второй;
  • начните с текстовых задач попроще — № 13, 15 (алгебра — логарифмы и тригонометрические формулы), 17 (неравенства);
  • если все получается, можно переходить к пугающим задачам № 14,16 (геометрия);
  • последнюю треть времени стоит посвятить самой сложной паре — подготовке к задачам из ЕГЭ под № 18 и 19.

https://youtube.com/watch?v=cFj0m0Hx0tU

Задания с развернутым ответом: немного статистики

Многие думают, что эта часть ЕГЭ по математике очень сложная. Поэтому ребята, которые не рассчитывают на высокие баллы, даже не приступают к ней. И очень зря! С помощью этих заданий можно заработать дополнительные баллы и побороться за высокое место в рейтинге.

Сейчас будет немного статистики. В среднем около 30% учеников получают полные 2 балла за решение № 12, а вот неравенство № 14 дается хуже, только около 12% с ним справляются на полный балл. Геометрия даётся ещё хуже: стереометрию № 13 полностью решают 2% выпускников, планиметрию (№ 16) менее 5%. А вот с экономической задачей (№ 15) справляются около 15%, а это целых 2 балла! Что касается № 17 и 18, то они даются ещё хуже, но на то они и самые сложные, хотя 1 балл за № 18 по статистике получают около 25% сдающих — там нужно просто привести пример.

Принцип 3 «Много практики»

Вопрос с закреплением новых знаний на практике стоит в школе очень остро. Сложные задачи с развернутыми решением, как правило, требуют много времени. Если класс не профильный, то качественно проработать большой объем материала «от и до» за занятие практически нереально. На мой взгляд, неплохой выход из этой ситуации состоит в том, что мы математически грамотно и аккуратно расписываем образец выполнения одного прототипа задания, а затем, уже более бегло, прогоняем метод на 5-10 аналогичных примерах.

Такой подход, кроме экономии времени, позволяет ученикам сконцентрировать все внимание на методе решения и особенностях данного задания, не отвлекаясь на уже знакомые и отработанные действия. Количество заданий, прорешенных за урок, существенно увеличивается

После такой интенсивной работы ученики «привыкают» к данному типу задач, страх перед ними, как перед чем-то новым и неизвестным пропадает.

SkySmart

Сайт: https://skysmart.ru/Стоимость: от 990 р. за индивидуальный урок, первый пробный урок — бесплатно

Подготовка к ОГЭ и ЕГЭ по математикеИндивидуально онлайн с сильным преподава­телем

Приведут к цели каждого ученика и помогут показать на экзамене свой максимум — и даже больше:

  • Определят уровень
    Сколько баллов можно набрать уже сейчас и какого результата реально достичь
  • Покажут, где теряются баллы
    Какие задания будут на экзамене и где чаще всего делают ошибки
  • Подготовят без паники
    Разберете все трудные темы и научитесь справляться со стрессом

Курс разработан по методи­ческим рекомен­дациям ФИПИ в 2020 году.

  1. Вычисления
    Как решать уравнения и неравенства с процентами, модулями, степенями и логарифмами.
    Задания: 1, 9, 17, 19, 5, 10, 11, 13, 19
  2. Анализ функций
    Как строить графики функций, определять их производные и первообразные.
    Задания: 2, 7, 12, 18
  3. Геометрия
    Как правильно читать и строить чертежи и помнить все определения и теоремы.
    Задания: 3, 6, 8, 14, 16
  4. Оформление
    Как правильно перенести ответы из черновика в чистовик и как это влияет на оценку

Профессиональные преподаватели математики с сертификатами DELTA, TESOL, CELTA, ФИПИ. Каждый год сами сдают ОГЭ и ЕГЭ, чтобы быть в курсе всех изменений.

Теория к заданию 4 из ЕГЭ по математике (профильной)

Вероятностью события $А$ называется отношение числа благоприятных для $А$ исходов к числу всех
равновозможных исходов

$P(A)={m}/{n}$, где $n$ – общее количество возможных исходов, а $m$ – количество исходов, благоприятствующих событию
$А$.

Вероятность события — это число из отрезка $$

В фирме такси в наличии $50$ легковых автомобилей. $35$ из них чёрные, остальные — жёлтые.
Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета.

Решение:

Найдем количество желтых автомобилей:

$50-35=15$

Всего имеется $50$ автомобилей, то есть на вызов приедет одна из пятидесяти. Желтых автомобилей $15$,
следовательно, вероятность приезда именно желтого автомобиля равна ${15}/{50}={3}/{10}=0,3$

Ответ:$0,3$

Противоположные события

Два события называются противоположными, если в данном испытании они несовместимы и одно из них обязательно
происходит. Вероятности противоположных событий в сумме дают 1.Событие, противоположное событию $А$, записывают
${(А)}{-}$.

$Р(А)+Р{(А)}{-}=1$

Независимые события

Два события $А$ и $В$ называются независимыми, если вероятность появления каждого из них не зависит от того,
появилось другое событие или нет. В противном случае события называются зависимыми.

Вероятность произведения двух независимых событий $A$ и $B$ равна произведению этих
вероятностей:

$Р(А·В)=Р(А)·Р(В)$

Иван Иванович купил два различных лотерейных билета. Вероятность того, что выиграет первый
лотерейный билет, равна $0,15$. Вероятность того, что выиграет второй лотерейный билет, равна $0,12$. Иван Иванович
участвует в обоих розыгрышах. Считая, что розыгрыши проводятся независимо друг от друга, найдите вероятность того,
что Иван Иванович выиграет в обоих розыгрышах.

Решения:

Вероятность $Р(А)$ — выиграет первый билет.

Вероятность $Р(В)$ — выиграет второй билет.

События $А$ и $В$ – это независимые события. То есть, чтобы найти вероятность того, что они произойдут оба
события, нужно найти произведение вероятностей

$Р(А·В)=Р(А)·Р(В)$

$Р=0,15·0,12=0,018$

Ответ: $0,018$

Несовместные события

Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)

Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:

$Р(А+В)=Р(А)+Р(В)$

На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение:

Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:

$Р(А+В)=Р(А)+Р(В)$

$Р = 0,3+0,18=0,48$

Ответ: $0,48$

Совместные события

Два события называются совместными, если появление одного из них не исключает появление другого в одном и том же
испытании. В противном случае события называются несовместными.

Вероятность суммы двух совместных событий $A$ и $B$ равна сумме вероятностей этих событий минус
вероятность их произведения:

$Р(А+В)=Р(А)+Р(В)-Р(А·В)$

В холле кинотеатра два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится
кофе, равна $0,6$. Вероятность того, что кофе закончится в обоих автоматах, равна $0,32$. Найдите вероятность того,
что к концу дня кофе закончится хотя бы в одном из автоматов.

Решение:

Обозначим события, пусть:

$А$ = кофе закончится в первом автомате,

$В$ = кофе закончится во втором автомате.

Тогда,

$A·B =$ кофе закончится в обоих автоматах,

$A + B =$ кофе закончится хотя бы в одном автомате.

По условию, $P(A) = P(B) = 0,6; P(A·B) = 0,32$.

События $A$ и $B$ совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий,
уменьшенной на вероятность их произведения:

$P(A + B) = P(A) + P(B) − P(A·B) = 0,6 + 0,6 − 0,32 = 0,88$

Ответ: $0,88$

Советы по подготовке к ЕГЭ по профильной математике 2021

Повторите теорию

Не откладывайте на потом. Вспомните все определения, формулы и понятия перед там, как приступать к решению задач. Попробуйте писать формулы по памяти, а потом сверять

И не забывайте: важно не вызубрить темы, а понять их. 

Не пропускайте первую часть

Одна из грубых ошибок — переходить сразу к решению второй части ЕГЭ. Многие задачи из первой решаются довольно просто, но не стоит их недооценивать. Они составлены так, чтобы проверить не только навык решения, но и внимательность к деталям. Прорабатывайте номера из первой части, ведь для достижения цели важен каждый балл. 

Внимательно читайте текст заданий

Смотрите, в каких единицах измерения требуется ответ и нужно ли его округлять

В задании №7 важно понимать, какой график вам дан — производной или функции. От этого зависит ответ на заданный вопрос

В экономической задаче №17 нельзя использовать готовую формулу. Вам нужно написать математическую модель самостоятельно.

Научитесь хорошо считать в уме

Учитесь вычислять без калькулятора — некоторые задания требуют навыка быстрого счёта. К тому же, на экзамене вам нужно оставить как можно больше времени на сложные задачи и проверку.

Проверяйте решения и ответы

Например, убедитесь, что правильно перевели число из обычной дроби в десятичную. Арифметические ошибки также часто встречаются в задаче на финансовую математику

В задании №9 обратите внимание на знаки, особенно если вам попались тригонометрические функции

Также важно без ошибок определить ограничения x в задаче №13. Если исходное уравнение содержит tgx, то — cosx≠0

Если уравнение содержит квадратный корень, подкоренное выражение — ≥0

Если исходное уравнение содержит tgx, то — cosx≠0. Если уравнение содержит квадратный корень, подкоренное выражение — ≥0.

Проверяйте свои знания

Вы можете пройти тест на бесплатном вводном занятии с преподавателем или на сайте ФИПИ. Так вы узнаете, что помните хорошо, а что нужно повторить. Также вы можете воспользоваться нашей библиотекой знаний с полезными материалами для подготовки. Нужно только зарегистрироваться на сайте. 

Не бойтесь второй части 

Смело решайте задания из второй части. Попробуйте справиться с заданиями №13 и №15. Скорее всего, они вам хорошо знакомы. Чаще всего №13 оказывается не таким уж и сложным. Если вы хорошо знаете геометрию, начните с №14 или №16. Если вам по душе алгебра, решайте задачи на параметр и свойства чисел — №18, 19.

Отдыхайте 

Составьте комфортное расписание занятий. Подготовка к ЕГЭ по профильной математике в 2021 не должна быть тяжким бременем. Проводите больше времени на свежем воздухе, встречайтесь с друзьями и не забывайте про здоровый сон. 

Виды заданий

В 2020 году госэкзамен содержит 19 заданий, которые делятся на два типа. Во-первых, это простые тесты, в которых надо выбрать правильный ответ. Его несложно увидеть на графике. Иногда нужно воспользоваться логикой.

Во-вторых, текстовые задачи. У них есть свои подклассы — вопросы, в которых достаточно расписать по всем правилам ход решения, дать ответ, и упражнения, где нужны не только примеры, но и строгое обоснование (теория, речь о № 18 и 19).

Важные моменты

Текстовых задач многие боятся. На самом же деле они такими уж страшными не являются для их решения нужно:

  • вчитаться в суть условия и понять, что хочет видеть в ответе разработчик (80% успеха);
  • применять алгоритм (не заученный порядок формул, а именно порядок рассуждений).

Сложность заключается в том, что некоторые учителя еще во время учебного года разбирают текстовые упражнения с учениками, давая готовое решение. Школьники, не особо вдаваясь в рассуждения о том, откуда что берется, заучивают формулировки и формулы. Этого делать не нужно, так легко запутаться. Создателям достаточно будет ввести в условие задачи незначительное изменение, чтобы весь заученный материал оказался бесполезным.

Где чаще всего совершают ошибки

Эксперты отмечают нередкие ошибки в первой части (которая решается элементарно). То ли в спешке, то ли из-за нервов, но ученики пишут скорость не того пешехода, путают плюс и минус. Поэтому привычка постоянно себя перепроверять может спасти вам десятки баллов.

Если идти по списку сложных вопросов, то:

  • в № 11 следует внимательно читать условие и не путаться в единицах измерения;
  • № 13 и 15 -знать формулы наизусть (первая неделя — учим, последняя — повторяем);
  • № 14, 16 — не забудьте составить чертеж, он часто нужен по условию и нередко помогает проверять себя на правильность рассуждений;
  • № 17 — применяем алгоритм, а не готовый порядок решения;
  • № 19 — к ходу рассуждений добавляем теоретическое обоснование.

Прямоугольный треугольник

В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла. 

Некоторые свойства прямоугольного треугольника:

  1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
  2. Если в прямоугольном треугольнике один из острых углов равен $45$ градусов, то этот треугольник равнобедренный.
  3. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)
  4. Катет прямоугольного треугольника, лежащий напротив угла в $60$ градусов, равен малому катету этого треугольника, умноженному на $√3$.
  5. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности $(R)$. (Рис.14)
  6. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями которых являются катеты данного треугольника. (Рис.14)

Один острый угол прямоугольного треугольника на $44°$ больше другого острого угла. Найдите больший острый угол.

Решение:

В прямоугольном треугольнике $АВС$ $∠А$ и $∠В$ – острые.

Пусть $∠ А – х$, тогда $∠ В — (х+44)$.

Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.

На основании этого правила, составим и решим уравнение:

$х+х+44=90$

$2х+44=90$

$2х=90-44$

$2х=46$

$х=23$

Угол $В$ больший в этом треугольнике, через $«х»$ он записывался как, $х+44$, следовательно, $∠В=23+44=67°$.

Ответ: $67$

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы. 

$АС^2+ВС^2=АВ^2$

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$ 

Для острого угла $В$: $АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А$: $ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом $(sin)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом $(tg)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом $(ctg)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
  5. Основное тригонометрическое тождество: $sin^2x+cos^2x=1$
  6. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
  7. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
  8. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.

Значения тригонометрических функций некоторых углов:

$α$ $30$ $45$ $60$
$sinα$ ${1}/{2}$ ${√2}/{2}$ ${√3}/{2}$
$cosα$ ${√3}/{2}$ ${√2}/{2}$ ${1}/{2}$
$tgα$ ${√3}/{3}$ $1$ $√3$
$ctgα$ $√3$ $1$ ${√3}/{3}$

Принцип 1. «Заложите крепкий фундамент»

Бесконечно жаль тратить время и так очень коротких занятий на отработку простейших, элементарных навыков, но именно они — залог будущего успеха ваших учеников! Парадокс состоит в том, что чем больше времени мы потратим на освоение базового набора знаний, тем больше мы его впоследствии сэкономим при решении более сложных заданий. Например, я всегда очень долго и кропотливо учу ребят решать элементарные тригонометрические уравнения, доводя их навыки до автоматизма. Но как только этот с материал станет понятнее, чем дважды два, мы с фантастической скоростью разбираем методы решения более сложных задач. И здесь открывается настоящий простор для экономии времени, как за счет скорости работы с простейшими заданиями, которые всегда встречаются «внутри» сложных, так и за счет возможности разбирать исключительно методы, оставляя их техническую реализацию на дом. 

У данного принципа есть и еще одна положительная черта: ребята не только набивают руку, но и приобретают уверенность в себе, своих знаниях и силах, перестают считать себя гуманитариями и начинают действительно понимать предмет. 

Цель и задачи изучения математики

При изучении дисциплины обеспечивается фундаментальная подготовка студента по таким разделам математики как, линейная и векторная алгебра, аналитическая геометрия, математический анализ, теория вероятностей и математическая статистика, соблюдается связь с дисциплинами: вычислительная математика, информатика, физика; происходит знакомство со стержневыми проблемами математики, базовыми положениями, навыками и понятиями, обязательными для прочного усвоения последующих дисциплин и практического использования полученных знаний в решении конкретных задач, которые ставятся перед инженером.

Examer

Сайт — examer.ru/ege_po_matematike/2021/ Длительность обучения — индивидуально. Стоимость обучения — бесплатно для самостоятельной подготовки или 2 490 рублей в режиме Турбо с видеоуроками и разбором домашних заданий.

На этом ресурсе школьники могут готовиться только к экзамену профильного уровня. На Examer нет репетиторов или уроков как таковых. Здесь есть теория для самостоятельного изучения и задания для практической отработки. Можно заниматься дома, а можно — в любом удобном месте, поскольку у ресурса есть мобильные приложения для Android и iOS.

Существенный недостаток — отсутствие разборов заданий. Если у ребенка не получается решить какую-то задачу, с проблемой он будет разбираться самостоятельно. Для этого можно почитать теоретические материалы или воспользоваться поиском в интернете. Безусловный плюс ресурса — бесплатный доступ на неограниченной время. Это прекрасная возможность для ребят из малообеспеченных семей подтянуть свои знания по математике и подготовиться к ЕГЭ.

Перед началом обучения система попросит пройти тест на определение начального уровня знаний и предполагаемого результата ЕГЭ по математике. Затем для каждого в автоматическом режиме составляется индивидуальный план подготовки. Студент проходит модули последовательно. Каждый новый урок будет открыт после успешного решения задач по предыдущему.

Важно!
В бесплатном режиме возможности системы ограничены. Максимальную эффективность дает Турбокурс, в котором предусмотрено 12 видеоуроков в месяц

Домашние задания с проверкой преподавателя, тестирование, помощь в решении трудных задач.

Логарифмические уравнения

Логарифмическими уравнениями называют уравнения вида $log_{a}f(x)=log_{a}g(x)$, где $а$ – положительное число, отличное от $1$, и уравнения, сводящиеся к этому виду.

Для решения логарифмических уравнений необходимо знать свойства логарифмов: все свойства логарифмов мы будем рассматривать для $a > 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любых действительных чисел $m$ и $n$ справедливы равенства:

$log_{а}b^m=mlog_{a}b;$

$log_{a^m}b={1}/{m}log_{a}b.$

$log_{a^n}b^m={m}/{n}log_{a}b$

Пример:

$log_{3}3^{10}=10log_{3}3=10;$

$log_{5^3}7={1}/{3}log_{5}7;$

$log_{3^7}4^5={5}/{7}log_{3}4;$

2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.

$log_a(bc)=log_{a}b+log_{a}c$

3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию

$log_{a}{b}/{c}=log_{a}b-log_{a}c$

4. При умножении двух логарифмов можно поменять местами их основания

$log_{a}b∙log_{c}d=log_{c}b∙log_{a}d$, если $a, b, c$ и $d > 0, a≠1, b≠1.$

5. $c^(log_{a}b)=b^{log_{a}b}$, где $а, b, c > 0, a≠1$

6. Формула перехода к новому основанию

$log_{a}b={log_{c}b}/{log_{c}a}$

7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение

$log_{a}b={1}/{log_{b}a}$

Можно выделить несколько основных видов логарифмических уравнений:

— Простейшие логарифмические уравнения: $log_{a}x=b$. Решение данного вида уравнений следует из определения логарифма, т.е. $x=a^b$ и $х > 0$

Пример:

$log_{2}x=3$

Представим обе части уравнения в виде логарифма по основанию $2$

$log_{2}x=log_{2}2^3$

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

$x = 8$

Ответ: $х = 8$

— Уравнения вида: $log_{a}f(x)=log_{a}g(x)$. Т.к. основания одинаковые, то приравниваем подлогарифмические выражения и учитываем ОДЗ:

$\table\{\ f(x)=g(x);\ f(x)>0;\ g(x) > 0, а > 0, а≠1;$

Пример:

$log_{3}(x^2-3x-5)=log_{3}(7-2x)$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

$x^2-3x-5=7-2x$

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

$x^2-x-12=0$

$x_1=4,x_2= -3$

Проверим найденные корни по условиям $\table\{\ x^2-3x-5>0;\ 7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

Ответ: $х=-3$

Метод замены переменной.

В данном методе надо:

  1. Записать ОДЗ уравнения.
  2. По свойствам логарифмов добиться того, чтобы в уравнении получились одинаковые логарифмы.
  3. Заменить $log_{a}f(x)$ на любую переменную.
  4. Решить уравнение относительно новой переменной.
  5. Вернутся в п.3, подставить вместо переменной значение и получить простейшее уравнение вида: $log_{a}x=b$
  6. Решить простейшее уравнение.
  7. После нахождения корней логарифмического уравнения необходимо поставить их в п.1 и проверить условие ОДЗ.

Пример:

Решите уравнение $log_{2}√x+2log_{√x}2-3=0$

Решение:

1. Запишем ОДЗ уравнения:

$\table\{\ х>0,\text»так как стоит под знаком корня и логарифма»;\ √х≠1→х≠1;$

2. Сделаем логарифмы по основанию $2$, для этого воспользуемся во втором слагаемом правилом перехода к новому основанию:

$log_{2}√x+{2}/{log_{2}√x}-3=0$

3. Далее сделаем замену переменной $log_{2}√x=t$

4. Получим дробно — рациональное уравнение относительно переменной t

$t+{2}/{t}-3=0$

Приведем все слагаемые к общему знаменателю $t$.

${t^2+2-3t}/{t}=0$

Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.

$t^2+2-3t=0$, $t≠0$

5. Решим полученное квадратное уравнение по теореме Виета:

$t^2-3t+2=0$

$t_1=1; t_2=2$

6. Вернемся в п.3, сделаем обратную замену и получим два простых логарифмических уравнения:

$log_{2}√x=1$, $log_{2}√x=2$

Прологарифмируем правые части уравнений

$log_{2}√x=log_{2}2$, $log_{2}√x=log_{2}4$

Приравняем подлогарифмические выражения

$√x=2$, $√x=4$

Чтобы избавиться от корня, возведем обе части уравнения в квадрат

$х_1=4$, $х_2= 16$

7. Подставим корни логарифмического уравнения в п.1 и проверим условие ОДЗ.

$\{\table\ 4 >0; \4≠1;$

Первый корень удовлетворяет ОДЗ.

$\{\table\ 16 >0; \16≠1;$ Второй корень тоже удовлетворяет ОДЗ.

Ответ: $4; 16$

Уравнения вида $log_{a^2}x+log_{a}x+c=0$. Такие уравнения решаются способом введения новой переменной и переходом к обычному квадратному уравнению. После того, как корни уравнения будут найдены, надо отобрать их с учетом ОДЗ.

Подготовка к олимпиадам: младшие школьники (5–7 классы)

Две основные олимпиады для младших школьников — это Математический праздник и Турнир Архимеда. Наряду с ними готовимся к олимпиадам «Ломоносов», «Покори Воробьёвы горы!», «Высшая проба», «Курчатов», а также к школьному и муниципальному этапам Всероссийской олимпиады школьников по математике.

Группировка листков по темам во многом следует тематическому каталогу problems.ru (как наиболее удачному с моей точки зрения). Листки содержат:

  • все задачи Матпраздника с момента его появления (то есть с 1990 года);
  • все задачи Городской устной математической олимпиады для 6–7 классов с момента её появления (с 2002 года);
  • все задачи Турнира Архимеда с 2011 года;
  • задачи последних олимпиад «Покори Воробьёвы горы!», «Ломоносов», «Высшая проба» «Курчатов» и «Физтех», а также школьных и муниципальных этапов Всероссийской олимпиады школьников.

На базе этих листков создано пособие Олимпиадная математика. Задачник 6–7.

Квадратные уравнения

Квадратное уравнение — уравнение вида $ax^2 + bx + c = 0$, где $a, b, c$ — некоторые числа a$≠0$, $x$ — неизвестное. Перед тем как решать уравнение, необходимо раскрыть скобки и собрать все слагаемые в левой части уравнения.

Числа $a, b, c$ называются коэффициентами квадратного уравнения.

  • $a$ — старший коэффициент;
  • $b$ — средний коэффициент;
  • $c$ — свободный член.

Если в квадратном уравнении коэффициенты $b$ и $c$ не равны нулю, то уравнение называется полным квадратным уравнением. Например, уравнение $2x^2 – 8x + 3 = 0$. Если один из коэффициентов $b$ или $c$ равен нулю или оба коэффициента равны нулю, то квадратное уравнение называется неполным. Например, $5x^2 – 2x = 0$.

Решение неполных квадратных уравнений

Неполное квадратное уравнение имеет вид $ax^2 + bx = 0$, если $a$≠0$; $c$=0$. В левой части этого уравнения есть общий множитель $x$.

1. Вынесем общий множитель $x$ за скобки.

Мы получим $x (ax + b) = 0$. Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому получаем $x = 0$ или $ax + b =0$. Таким образом, данное уравнение эквивалентно двум уравнениям:

$x = 0; ax + b = 0$

2. Решаем получившиеся уравнения каждое отдельно.

Мы получим $x = 0$ и $x={-b}/{a}$. Следовательно, данное квадратное уравнение имеет два корня $x = 0$ и $x={-b}/{a}$

$4х^2 — 5х = 0$

Вынесем х как общий множитель за скобки:

$х (4х — 5) = 0$

Приравняем каждый множитель к нулю и найдем корни уравнения.

$x = 0$ или $4х — 5 = 0$

$х_1 = 0   х_2 = 1,25$

Ответ: $х_1 = 0; х_2 = 1,25$

Неполное квадратное уравнение вида $ax^2 + c = 0, a≠0, b=0$

Для решения данного неполного квадратного уравнения выразим $x^2$.

$ax^2 + c = 0$

$ax^2 = — c$

$x_2 = {-c}/{a}$

При решении последнего уравнения возможны два случая:

если ${-c}/{a}>0$, то получаем два корня: $x = ±v{{-c}/{a}}$

если ${-c}/{a}<0$, то уравнение во множестве действительных числе не имеет решений.

$x^2 — 16 = 0$

$x^2 = 16$

$x = ±4$

Ответ: $х_1 = 4, х_2 = — 4$

Решение с помощью дискриминанта

Дискриминантом квадратного уравнения D называется выражение

$b^2 — 4ac$.

При решении уравнения с помощью дискриминанта возможны три случая:

1. $D > 0$. Тогда корни уравнения равны:

$x_{1,2}={-b±√D}/{2a}$

2. $D = 0$. В данном случае решение даёт два двукратных корня:

$x_{1}=x_{2}={-b}/{2a}$

3. $D < 0$. В этом случае уравнение не имеет корней.

$3х^2 — 11 = -8х$

Соберем все слагаемые в левую часть уравнения и расставим в порядке убывания степеней

$3х^2 + 8х — 11 = 0$

$a = 3 ,b = 8, c = — 11$

$D = b^2- 4ac = 82- 4 · 3 · (-11) = 196 = 142$

$x_{1}={-b+√D}/{2a}={-8+14}/{6}=1$

$x_{2}={-b-√D}/{2a}={-8-14}/{6}=-3{2}/{3}$

Ответ: $x_1=1, x_2=-3{2}/{3}$

Устные способы

Если сумма коэффициентов равна нулю $(а + b + c = 0)$, то $х_1= 1, х_2={с}/{а}$

$4х^2+ 3х — 7 = 0$

$4 + 3 — 7 = 0$, следовательно $х_1= 1, х_2=-{7}/{4}$

Ответ: $х_1= 1, х_2 = -{7}/{4}$

Если старший коэффициент в сумме со свободным равен среднему коэффициенту $(a + c = b)$, то $х_1= — 1, х_2=-{с}/{а}$

$5х^2+ 7х + 2 = 0$

$5 + 2 = 7$, следовательно, $х_1= -1, х_2 =-{2}/{5}$

Ответ: $х_1= -1, х_2 = -{2}/{5}$

Кубические уравнения

Для решения простых кубических уравнений необходимо обе части представить в виде основания в третьей степени. Далее извлечь кубический корень и получить простое линейное уравнение.

$(x — 3)^3 = 27$

Представим обе части как основания в третьей степени

$(x — 3)^3 = $33

Извлечем кубический корень из обеих частей

$х — 3 = 3$

Соберем известные слагаемые в правой части

$x = 6$

Ответ: $х = 6$

Дробно рациональные уравнения

Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным.

Чтобы решить дробное уравнение, необходимо:

  1. найти общий знаменатель дробей, входящих в уравнение;
  2. умножить обе части уравнения на общий знаменатель;
  3. решить получившееся целое уравнение;
  4. исключить из его корней те, которые обращают в ноль общий знаменатель.

$4x + 1 — {3}/{x} = 0$

1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x≠0$

2. находим общий знаменатель дробей и умножаем на него обе части уравнения

$4x + 1 — {3}/{x}= 0¦· x$

$4x · x + 1 · x — {3·x}/{x} = 0$

3. решаем полученное уравнение

$4x^2 + x — 3 = 0$

Решим вторым устным способом, т.к. $а + с = b$

Тогда $х_1 = — 1, х_2 = {3}/{4}$

4. исключаем те корни, при которых общий знаменатель равен нулю В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $х_1 = — 1, х_2 = {3}/{4}$

При решении уравнения с двумя дробями можно использовать основное свойство пропорции.

Основное свойство пропорции: Если ${a}/{b} = {c}/{d}$, то $a · d = b · c$

Принцип 4 «Эффективные методы»

Качество подготовки к экзаменам во многом зависит от методики преподавателя. Я всегда руководствуясь принципом Парето о том, всего 20% знаний дают 80% результата. Поэтому первостепенной задачей является классификация заданий, выбор наиболее распространенных типов и отбор наиболее эффективных методов их решений.

К сожалению, многие полезные приемы, существенно облегчающие процесс решения и экономящие уйму времени, не входят в школьную программу. Например, метод рационализации, который серьезно упрощает работу со сложными логарифмическими, показательным и другими типами неравенств, изучается только в сильных физмат школах. А между тем он намного легче и проще стандартных преобразований. Его применение не только экономит время, но и сокращает количество случайных ошибок по невнимательности. При этом научиться применять его под силу «троечнику» всего за 1-2 урока. А значит вероятность справиться со сложными задачами профиля у ваших учеников увеличивается в разы.

Количество баллов, которые можно получить.

На ЕГЭ по математике возможно заработать 31 первичных балла. При этом один первичный балл будет равняться четырём или пяти вторичным.

Для распределения времени на экзамене поставьте для себя вопрос: «какой бал мне нужен?»Если целью вашей работы является средний балл, то есть семьдесят баллов, то работа не может быть закончена через час. Поспешное решение может повлечь за собой массу ошибок

Для набора 70 баллов, основное внимание необходимо сконцентрировать на первой части. С 10:00 до 11:20 необходимо решить всю первую часть ЕГЭ по математике

Затем передохнуть две минуты.С 11:30 до 12:10 необходимо заняться проверкой выполненного задания и переписать ответы в бланк. Если целью является получение большего количества баллов, то с 10:00 до 10:20 решаются все тестовые задания, с которыми не должно быть трудностей.С 10:20 до 11:30 решаются в чистовике задания №13, 15, 17.С 11:30 до 12:30 выполняются задания №14 и №16 в порядке сложности.С 12:30 до 12:35 ведётся отдых.С 12:35 решаются номера №18. И все переписывается в бланки.